Timelike Compton Scattering

Tanja Horn

THE CATHOLIC UNIVERSITY of AMERICA

In collaboration with: Y. Illieva, F.J. Klein, P. Nadel-Turonski, R. Paremuzyan, S. Stepanyan

12th Int. Conference on Meson-Nucleon Physics and the Structure of the Nucleon Williamsburg, VA 2 June 2010

CUA

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Timelike Compton Scattering - a first look, MENU 2010

1

3-D Structure of the Nucleon

Form Factors

longitudinal momentum (DIS) transverse charge and magnetization distributions [GPD forward limit] [GPD integrated over x] $\delta z_1 \sim 1/Q$ $p \to \infty$ f(x) $\rho(b_{\perp})$ $f(x, r_{\perp})$ 0 b_{\perp}

Generalized Parton Distributions (GPDs) [exclusive reactions]

Parton Distributions (PDFs)

Transverse spatial distribution of quarks with longitudinal momentum fraction x

GPDs "unify" form factors and parton distributions

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Timelike Compton Scattering - a first look, MENU 2010

2

Compton Scattering

- Real Compton Scattering
- Deeply Virtual Compton Scattering (DVCS)
 - Outgoing photon is real
 - Simplest probe of GPDs
- Timelike Compton Scattering (TCS)
 - Incoming photon is real
 - Complementary to DVCS
- Double DVCS
 - Both photons are virtual
 - Can provide most information
 - Experimentally challenging

GPDs can be extracted from Helicity Amplitudes or Compton Form Factors

3

Probing GPDs through Compton Scattering

of AMERICA

MENU 2010

TCS vs. DVCS

Pros

- Excellent tool for measuring the real part ٠
- TCS and DVCS amplitudes are equivalent only to leading order •
 - at finite Q², data on both reduces model dependence of GPD extraction
- TCS asymmetries are easy to compare directly with GPD models ٠
 - Polyakov-Weiss D-term

Cons

- Cross section smaller than for DVCS
 - enhancement through interference with Bethe-Heitler always needed
- Resonances in timelike final state limit Q^2 coverage ٠

GPD models sensitive to real part at large x

- Model predictions similar for Im H, but large differences for Re H
- Reliable measurements of real part are needed!

D-term in DD-parameterization of GPDs

Real part of the Compton amplitude is very sensitive to the D-term

7

Photoproduction of Lepton Pairs

- TCS cross section is small compared with Bethe-Heitler for all kinematics
 - cannot be accessed directly
- The interference term is, however, larger and easy to isolate

Observables

- Under reversal of the lepton charge:
 - Compton and BH amplitudes are even
 - Interference term is odd
 - Observables that change sign project out only the interference term
- Example of observable: azimuthal angular distribution of the lepton pair

9

Tanja Horn, Timelike Compton Scattering - a first look, MENU 2010

THE CATHOLIC UNIVERSITY of AMERICA

The interference term

To leading order, in terms of helicity amplitudes:

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Timelike Compton Scattering - a first look, MENU 2010

Azimuthal e⁺e⁻ asymmetries in TCS

- Numerator is proportional to Re M--
 - cos φ part of interference term
- R can be compared directly with GPD models
 even in experiments with limited statistics
- Sensitive to Polyakov-Weiss D-term

THE CATHOLIC UNIVERSITY of AMERICA

•

Tanja Horn, Timelike Compton Scattering - a first look, MENU 2010

TCS at JLab 6 and 12 GeV

6 GeV

- New CLAS data collected with tagged real photons (g12)
 - Data ready for analysis (will start in the fall)
- Several CLAS data sets with quasi-real photons (e1-6, e1f)
 - Analysis in final stages (1 PhD completed)

12 GeV

- Experiments with quasireal photons planned at CLAS12
 - Very good electron identification and momentum resolution
- Experiments with real photons in Hall D natural next step
 - Linear polarization at 9 GeV, circular at 12 GeV
 - Good forward and backward acceptance

The CLAS g12 experiment

- The g12 experiment carried out between March 29 and June 8, 2008.
- Tagged real photons with energies of 3.6 5.4 GeV on LH2 target.
- CLAS Cerenkovs and calorimeter allow good pion rejection
 - 10⁻⁷ with two leptons detected, 10⁻⁴ with one lepton detected
- 25 billion two- and three-track events collected (mostly hadron triggers)

Quasi-real photoproduction of e⁺e⁻ in CLAS

Missing momentum analysis of final state

ep-eep2

A = 1S identified as an electron scattered at 0 deg $Q^2 < 0.01$ (GeV/c)² and $|M_X^2| < 0.1$ (GeV)²

Tanja Horn, Timelike Compton Scattering - a first look, MENU 2010

14

Ptr P MM

CLAS e1-6 and e1f experiments

CLAS/e1-6

• Several CLAS data sets with 6 GeV electron beams available

- CLAS has good particle identification and resolution, but complicated acceptance
- Comparison with hermetic detector (GLUEX) would be interesting

TCS at 12 GeV

- TCS with quasi-real photons ٠
- Circular photon polarization ٠

GlueX in Hall D

- TCS with tagged real photons •
- Linear photon polarization •
- Can be run in parallel with other experiments •
- Several years of beam time potentially available ٠

THE **CATHOLIC UNIVERSITY** of AMERICA

Timelike window at 12 GeV

- JLab 12 GeV kinematics are ideally suited for TCS
- Data can be taken in the resonance-free region between ρ' and $J\!/\Psi$

Summary

- TCS can be an important part of the JLab DVCS program, providing
 - Real part of amplitude
 - Corrections at finite Q²
 - Direct comparison with GPD models
- First experiments completed in Hall B at Jefferson Lab
 - g12 with tagged real photons analysis to begin soon
 - several data sets using electron beams analysis in progress
- Natural extension to 12 GeV (in two Halls?)
 - Can share several years of beam time with approved experiments

TCS kinematics

- p,p' = momentum of the incoming and scattered proton
- q,q'=momentum of the incoming and scattered photon
- k,k'=momentum of e⁻, e⁺
- θ = angle between the scattered proton and the electron
- ϕ = angle between lepton scattering and reaction plane

Factorization Scale in Compton Scattering

- Accessing physics contained in GPDs requires hard-soft factorization to apply
- In TCS, the hard scale is given by the mass of the final state photon (Q^2)
 - experimentally accessed as the invariant mass of the produced lepton pair

